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Hybrid Structures for Simple
Computer Performance Estimates

Gordon Lyon

Even the coarsest performance estimators for a modern computer must

account for architectural dependencies and variabilities. For instance, average

execution rate is rather sensitive to the match between machine capabilities and

application workload.

Computing can be viewed as system components that are subjected to demands
of an application, or alternately, as an application workload partitioned by system

service. Models based upon this dual perspective help organize simple performance

measurements. Several examples demonstrate strengths of a straightforward and

flexible partitioning scheme based upon tree graphs. Quite explicit, the graphs

promote a more critical view of measurements and support multiple

interpretations.

Keywords: application; architecture; benchmarks; components; models;

performance.

1. Measurements and Structure

Performance measurement of the modem computer is notoriously elusive, its

experimental approaches often tom between two extremes. The first summons a large

battery of comprehensive benchmark tests, each reflecting the application world [15],

Unfortunately, these tests may be difficult to characterize, and the ensemble expensive to

administer, since applications are exceedingly diverse [10].

A second view, taken here, focuses upon barest architectural features. In essence,

benchmark measurements of a machine’s various processing modes are attached to a

simple model of its architecture. This economy, while rougher, provides a broad,

accessible summary of salient facts. Although it is generally agreed that the first

approach, with its knowledge of applications, yields the fullest characterization [12],

circumstances
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Administration, BXA Order No. ITA-87-PAY-226-B, and the Department of Energy, DoE Order No. DE-
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arise for which an architecturally-focused view is better. A large number of machine
choices may need preliminary winnowing. Or, the application community may be poorly

defined, as it is for machines whose export a government wants to control. In export,

only the machine architecture and operating system are definitely known [31.

1.1 Workload Partitions

The general perspective is set in simple terms. There is no explicit provision for

either process or job. A workload of unordered, but not necessarily unqualified,

operations is partitioned into (disjoint) subsets using a system’s architecture as a guide.

Then an interpretation is applied to these subsets.

To maintain consistency, the method demands some care. The partition must be

consistent with the interpretation. For instance, throughout much subsequent discussion,

the chosen interpretation establishes processing times for each subset. Overall time is

then the sum of times of all subsets. It follows that operations from various subsets

cannot overlap in time; to do so destroys the consistency of the summation [2].

Executions within a subset proceed in some undefined manner, serial or parallel, but at

one designated rate. Clearly, another interpretation rule imposes its own partition

constraints.

Applications are defined logically at the language level, as in FORTRAN, Pascal, or

Ada®. However, this is not to say that identical textual repetitions of language
expressions incur the same execution costs. A principal tenet is that such is often not the

case; as an example, context may place one instruction in the instruction cache, to be
fetched from this fast location, whereas distinct circumstances later have an identical

instruction fetched from slower main memory. It is assumed that any machines to be

compared run essentially the same logical programs, even though respective machine
codes are distinct. The actual description of an application workload comprises
frequencies of operations on a given machine, subject to whatever classification a

partitioning imposes. This application signature is much weaker than stipulating

processor streams.

1.1.1 Dependencies, Competitions, Trees. Operations with distinct rates often

determine distinct partition subsets. This is true for RISC, vector or parallel machines.

One partition might be for serial thread operations, another for multiple-threads. Subsets

may be further partitioned, so that there are double-threads, triple-threads, etc. Such
additional partitionings are usually local to some architectural detail and have no
applicability to other subsets. They are conditional, rather than global in scope.

Furthermore, subsets may compete against each other. This is true whenever two or

more subsets identify with results that are treated the same in further processing; i.e., a

floating point value is the same regardless of its scalar or vector origin. These two points,

dependencies and competitions, suggest that the partitioning mechanism should not be

-2 -



general set operations, but rather, a tree notation. A tree expresses dependent or

competing partition choices and admits local, ad hoc refinements without obscuring other

details unnecessarily.

1.2 Architecture and Coarse Evaluations

Determining important performance aspects may be a straightforward interpretation

of the hardware and architecture, but this is not guaranteed. Machines hold surprises in

capabilities established not through obvious architectural features, but through

synergistic strengths and weaknesses of component groups, including compilers and

loaders. On the other hand, one would like to simplify specifications and illuminate

major performance characteristics of a machine via standard benchmarks. This endeavor
is related to performance modeling, and entails many of the same hazards. It is important

that the few emphasized features dominate performance. Some general questions on a

machine’s fundamental balance and capabilities include:

• size of memories
• processor bandwidths
• i/o capabilities

• memory-to-processor bandwidths

• processor-to-processor communication
® memory-to-memory bandwidth

Hillis claims, with good justification, that the above must be in reasonable balance for a

system to warrant serious attention [7]. The list is a good minimal tally, a place to start,

but there are other points analogous to arguments made about partitioning. Certain

machine capabilities will have importance only in the context of others. Thus length-of-

vector is a factor for vector processing, but not for scalar processing on the same vectors.

Given the specialized nature of many computing elements, the opportunities for

conditional capabilities are great.

Another pivotal execution interaction occurs among operation modes. Otherwise

interchangeable results may incur very different costs of computation, depending upon
their mode of origin. Distinct workload contexts encourage competitions among
operation modes that account for many performance variations.

Operations can be classified as reduced or multimodal. An operation’s actual

designation depends upon architecture and implementation. For this reason, modal
details require special attention.

Reduced operations. The term reduced denotes an operation that behaves
more or less the same under varieties of processor and system state. On older

machines, operations were often quite predictable. Simple formulae were
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even provided by manufacturers to calculate the clock cycles for each
instruction. In the terminology, these operations were reduced, or single

mode.

Multimodal operations. The modem machine may exhibit a range of

execution behavior for equivalent results. Examples include: scalar or vector

dispatch, instruction cache conditioning, memory-fetch anisotropy. Operation

times vary greatly.

1.2.1 The Modality. A modality is a set of modes whose operations can yield equivalent

results. The modality forms a k-alternative, forced choice ofmodes. The following table

summarizes four common (binary) modalities. The first three sometimes occur on the

same machine.

Competitive

Modes

Architectural

Focus

Appx. Hardware

Differences

Improvement

w/ Prudent Use

1 scalar vs. vector peak vector is Monte Carlo trial—none

vector processors 4x to 25xfaster lin. alg.—near peak [6]

random GATHER memory unit-stride is 3x to 7x

2 or SCATTER vs. system

,

2.5xfaster estimated

unit-stride vector operations (at least) HI, [91. [18]

by-row vs. virt. memory page faults columns—30% fasterfor

3 by-column subsystem, slower by 104 ; linear eq. solver

FORTRAN scalar operations source: row refs. wlFORTRAN [11]

4 messages vs. loosely- memory refs—5Ox array processor w/mesh:

memory refs. coupled nodes to 1C?xfaster lOxfaster [13]

Table I. Four Modalities and Their Performance Variations

On some architectures, one modality dominates all others. This is usually true for

scientific machines with scalar and vector capabilities.

Example 1: A dominant competition interpreted. A classic competition occurs on
machines that perform either scalar or vector computations. Answers are the same done
either way, but since vector processing is four to twenty-five times faster, it is naturally

preferred. However, the scalar mode persists because its startup is brief. Not every

calculation reduces to linear algebra, which is the essence of the vector viewpoint.

Consequently, programs remain mixes of vector and scalar, the ratio depending upon
application. To account for this, it is very common [17, 5] to (i) estimate scalar and
vector rates via benchmark measurements s and v, and (ii) derive a composite

performance estimator p .
that interprets a scalar-vector partition of workload:

S
y
V

Up, = a/s + (l-a)/v, where a="scaiar" fraction
s,v

-4 -



The interpretation rule that p
§ v

(a) exemplifies is Amdahl’s law. Consistent in its use of

rate and time, this rule will be used exclusively. Additional terms can be added on the

right-hand side for further competitor modes. The only restriction is that right-hand

numerators sum to unity. Parameter values s and v are regarded as "basis" capabilities of

pure scalar and vector modes. The example’s minimalistic partition only resolves to

vectors of one length, or to some mean length.

Numerous investigators suggest competing modes to estimate performance [17, 5, 9].

While usually bimodal, trimodal presentations of benchmark data—such as parallel,

vector, and serial—have appeared [5]. These simple partitionings of workload can accept

further local refinements through multi-level selections. For instance, rather than just a

vector or scalar partition, let scalars have further divisions for by-row or by-column
(FORTRAN) fetching, as in Table I. Such a partitioning is depicted in the left tree part

of Figure 1 . The weighted tree is a macro-level flow model decorated with results from
benchmarks. It can

• display crucial assumptions in a compact, quickly surveyed format
* support performance estimates, which are computed from its components

2. Capacity-and-Use Tree

A capacity-and-use tree , CUT, is a doubly-weighted tree-graph. The unadorned tree

describes a system’s dominant architecture, while all nodes and arcs have weights of

capacity (an admittance) and use (a frequency). Arc capacity admittances c- describe a

system’s component strengths. Capacities are admittances because these can be obtained

from benchmarks without correcting constantly for code size. Arc frequency weights f.

define application classes through their demands upon architectural features. CUTs
varied on workload frequencies generalize the scalar-vector benchmarking interpolation

above. (Unlike many analytic graph models [4], time is not explicit.)

CUT arc weights are intrinsic to the stage that an arc represents, whereas node
weights are cumulative from the tree root. Arcs from a node represent alternatives, e.g.,

operations on scalars or vectors, operands via inter- or intra-node communications.
Interpretation assumes that these alternatives never proceed concurrently, so the CUT
must be built accordingly. Let Cw and F^ be capacity and frequency weights of tree

node W. Distinguished root node R is such that C^=l and This reflects 100%

workload at peak performance. Suppose that a directed arc wx from W to X has weights

0<c <land0<f <1, subject to X. f .=1. Thenwx wx J
i wi

CX
= CW cwx

Fv = Fu , fX W wx

A node with no fanout is a leaf. Each leaf i has a frequency weight F. and a capacity C.

-5 -



Leaf weights provide estimates of performance. If all operations run at peak capacity,

the "time" is 1/1=1, i.e., a 100% fraction of code divided by the highest normalized rate.

Naturally, common cases are worse than this. Thus, F./C- is the cumulative time (relative

to unity) for all computations with attributes that match leaf i; a coefficient of overall

system effectiveness against peak is then

C
eff

=[F
l
/C

l
+F

2
/C

2
+ ^ -1

2d Hypothetical Vector System XXX

Assume from Table I a hypothetical vector, memory-to-memory System XXX with:

• relative rates: scalar-0.1, vector=L0
• workload mix: scalar=30%, vector=70%
• relative scalar rates: by-row=0.7, by-column=1.0
• scalar workload mix: by-row=50%, by-column=50%
• relative vector rates: GATHER-SCATTER=0.3, unit-stride=L0
• vector workload mix: GATHER-SCATTER=50%, unit-stride=50%

XXX at its CUT root (Figure 1) has a peak efficiency of 1, but the leaves yield a true

efficiency of 0.194 relative to the application . This agrees with everyday experience,

which seldom approaches anywhere near peak vector performance. Admittedly, too

coarse partitionings may ignore startup delays and other real-life elements, although

corrections can be made, either in tree arcs—as ad hoc partition refinements— or in any
estimator that interprets leaf values. Any new interpretation terms must be consistent

with the partition, however. The tree need not be balanced.

2.2 Discussion

The typical modeler will say, "The CUT is not very accurate. It is too simple."

However, the hybrid CUT subsumes benchmarking work, e.g. [3], and thus has at least

that accuracy. Furthermore, a hybrid framework avoids some taxing problems attendant

to pure modeling, e.g., inaccuracies from lacking or incorrect detail. Much fine detail is

implicit in test codes. Basis benchmark results that decorate a CUT keep it within the

realm of reality; each has, after all, actually been observed. Of course, this has its own
abuses. Benchmarks can also assume too much or too little, and thereby fail to catch

important details.
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CUTs enjoy the flexibilities of their simple formal structure. They need not be

complex. As a practical issue, a very complex CUT is probably not in the spirit of the

method, which is meant to be quick, coarse and explicit. Also, as CUT arborescences

multiply, the demand upon application specification grows. Each added fan-out in the

tree needs more application information for its weights. A happy medium will arrive

fairly quickly, as gains of accuracy from the model diminish and demands for application

parameters rise. An interesting study by Wang et.al. [16] statistically demonstrates that

among the 24 LFK (Livermore loops) benchmarks, there are but three to five predictive

dimensions: A few benchmark scores should characterize a machine that is not too

refractory to program.

The position in the tree of a modality, such as sc alar-vector, depends upon how
dominant and how dependent it is. In Figure 1, the scalar-vector modality is the root

fan-out because it is independent and dominant. Beginning the tree with another factor

would duplicate scalar-vector fan-outs throughout the structure. Secondary fan-outs in

Figure 1 are each dependent modes, but this is not generally true in other systems. Some
modalities will be independent of each other.

2.2.1 Other Architectures, Other CUTs. In addition to the three modalities of Figure 1,

Table I has a fourth, which contrasts processor-to-processor messages against processor

private-memory references. Depending upon these communication choices, executions

vary by a factor of 10 [13]. Operand-to-processor communication may be up to three

decimal orders of magnitude faster when direct from memory. Thus, disparate

communication modes might serve well as a first differentiation in a CUT for SIMD array

processor performance.

2.3 Modeling Component Changes

The example of interpolation between scalar and vector benchmarks shows how
fixed system parameters can be used to estimate performances for differing types of

applications. The application signature is the key to this. Another interesting possibility

explores implementation (capacity) changes in the system, holding the application

signature constant. The following must hold:

1. The architectural layout is fixed, i.e., the underlying tree remains the same.

2. The application workload is also fixed., so that frequency weights on the tree do
not change. (Cases with load redistribution are discussed afterwards as

accuracy tolerances of table entries.)

3. Computational capacities (admittances) can be modified within limits. This

amounts to varying an implementation via faster components, better subunits,

or less expensive, slower pieces. But improvements cannot "amplify"

capacity, i.e., exceed admittances of 1.
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Whenever circumstances allow the above, each CUT can supply tables of equal-gain

performance increments. Essentially, factors of capacity are treated as independent

contributions to performance. The challenge in this naive but useful formulation is to

find restructured forms of a CUT’s weights that yield simple tabular entries. Although
distinctions will arise among CUTs and their applications, several general rules seem
appropriate:

• Select base values of CUT arc capacities to which changes may be made. (Each
varied capacity establishes a table column.)

® Preclude compound effects. Let value F./G at leaf i change only via one varying

arc capacity.

• Sum those leaf weights descendent from a varied arc capacity to determine its

contribution to performance.
• Convert the range of a capacity’s performance contribution into an integer table

column index by dividing with a suitable scaling term (not necessarily an

integer).

• Scale all ranges with identical terms; otherwise table columns will not be equi-

increment. Incorporate scaling terms into the table’s interpretation formula.

• Shorten contribution ranges for which the scaling division is not integral by
limiting slightly the corresponding capacity changes.

The spirit and form of the transformations are captured by an example.

2.3.1 A Tabular Format for XXX. Let the system XXX of Figure 1 be the base. Its

(relative) times are computed from the leaf entries; they are then adjusted so that the

computed coefficient is 1. Simply multiply each contributed time by the actual efficiency

coefficient. Thus, from leaves in Figure 1,

”t(A)" =(.15/.07)*0. 194=0.415

"t(B)" =(. 15/. 1)*0. 194=0.291

”t(C)" =(.35/0.3)*0. 194=0.227
"t(D)" =(.35/l)*0. 194=0.068

The interpretation "Rate relative to XXX" is then

R
rel-to-XXX

l/E-t(i) = 1/1 = 1,

as expected for base values.

Factors A (by-row) and C (GATHERing) will constitute a small tableau. If degraded
capacities were of interest for B (by-column) and D (unit-stride), these could be included

as well. Intermediate Table II depicts a range of contributed times for A and C. Base
times result from XXX as the base system. Best times are when the capacities are 1, i.e.,

fully effective. These two ranges, rounded to 0.12 and 0.16, determine a scaling term,

0.04, that gives reasonable-sized table increments. Other scaling terms yield different

table resolutions. Because base values t(A) and t(C) are larger and their improvements
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smaller (cf., Table II), actual improvement entries are decrements.

Base Best Range Range, in Increments

A 0.415 0.291 0.124 3 [*0.04=0.12]

C 0.227 0.068 0.159 4 [*0.04=0.16]

Table IL Dividing Contribution Ranges by 0.04 for Increments

The interpretation rule for Table III reflects use of a scaling term:

R
rel-to-XXX

= 1/[t(i) chan§es +1 1
= 1/[0.04*(A+C)+1] = 100/[4*(A+C)+100]

Circumstances will dictate linear reformulations appropriate to other CUTs.

R
rel=tO'XXX

- 10(> / [4*(A-hC) + 100 ]

A: column references C: GATHERS
=4 n.a. fantasy "GATHERer"
-3 huge real memory better loader and memory
”2 larger memory faster memory
-1 .oo smarter loader

0 System XXX System XXX
1 «oc ...

2 less real memory clustered references

3 ...

4 pinch on memory "hot spot" in GATHERS

Table HI. Performance Influence of Circumstances for A and C

The expression in Table ID provides an index of computation speed for a new
machine variant relative to the base implementation of the understood, fixed architecture

XXX running the chosen application. This simplification is especially useful whenever
one application is prominent, preferably dominant, in an environment. (Money estimates

for subcomponent substitutions further improve the method’s utility.) Suppose there is a

machine like XXX, but with a huge amount of real memory (A=-3). Unfortunately, its

loader produces clustered references (C=+2). The performance of this "XXX?" machine
relative to XXX and the application is 100/[(-3+2)*4+100]= 1.04, which hardly seems to

justify its higher memory costs. An improved loader would probably make a more
competitive product.

-9 -



2.3.2 Related Work. The tableaux work not only for digital computer modeling, but

serve equally well for other engineering practice, such as simplified aerodynamic drag

coefficient estimation [19]. Wind tunnel testing is essentially an analog method of

deriving aerodynamic information. Two decades ago, White [19] published a short note

on an estimation technique for the drag coefficient of automobiles. While construction

details are lacking in his communication, it is clear that the method works because

(1) automobiles are assumed fixed in architecture (hood, cabin, trunk), and (2) travel is

set at highway speed, so the Reynolds number, which determines classes of airflow, is

constant across comparisons. Variations are illustrated well by sample calculations for

windshield shape: add +1 for full wrap-around, +2 for wrapped ends only, +3 for bowed
and +4 for flat. Furthermore, add +1 for an upright windshield, and +1 for rain gutters.

Multiply by 0.0095. This contribution of the windshield is added to a base-form drag of

0.16, which would be a teardrop shape with wheels, but otherwise undetailed. Clearly,

extending this method to trucks demands new base and additive values, as well as

corrections. This says, of course, that the automotive architecture would change. Similar

application corrections might be needed to account for much elevated autobahn speeds

that have different flow patterns.

White’s tables are generally accurate to ±7 %. Some of this uncertainty must surely

arise from mutual airflow interference among choices in his tables. The analogy for

computer systems is workload redistribution.

2.3.3 When Load Redistributes. In many circumstances, the partition on the workload
changes as capacities are varied. For instance, suppose that a machine has vector, scalar,

and overlapped scalar-vector modes. Any change to a new scalar performance, s-new,

affects the overall workload fraction that is overlapped. This is handled by calculating

both best and worst redistributions, by entering "s-new" into the scalar unit’s column at an

index location that reflects a performance midpoint between worst and best, and by
declaring the predictive precision of the entry. This is reasonable, since column indices

are linked to performance increments, and not to capacities per se. Overall table

accuracy is established by the entry with worst predictive precision.

Interactions among multiple changes will further degrade the precision of table

predictions. Whenever multiple perturbations become too obscuring, a table should be

restricted to one-at-a-time excursions of capacity from the base set, i.e., "pick a column."
Because the restricted table can still be used to compare respective gains of system
component changes, the restriction is not severe; a succession of tables might be

employed for upgrades over time. Workload rebalancing for a single component change
can be far less disturbing than one might expect, although actual tolerances can only be

determined case-by-case. Redistributions for a scalar-vector machine are illustrative.

Overlapped Scalar-Vector. The assumed architecture has a scalar mode, a single

vector mode, and an overlapped, non-interfering scalar-vector mode. Perhaps this is

idealistic, but the example shows well the dual calculations that establish accuracies of

table entries. Application fractions and base machine capacities are:

a at Ca (scalar)
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(3 at Cp (vector)

a’+P’ at C
a+p

(overlapped), subject to a’ Cp = p’ Ca

Let a new scalar rate be C’ = k C . It is as if a k-faster unit had been acquired for the

machine.

(i) Worst case. Assume all available places for scalar dispatches were in use in the

overlapped partition. Consequently, a faster scalar unit diminishes that portion of the

workload done as overlapped, which is the fastest rate. Table IV shows new distributions

of load. Note that the overlapped mode has lost (k-l)PTk.

(ii) Best case. Suppose there are ample opportunities to dispatch new overlapped scalar

operations, that the prior limit on scalar overlapped operations has been the speed of the

(now faster) scalar unit (Table IV). Non-overlapped scalar execution drops by (k-l)a’.

Identical arguments apply to improved vector capability, but roles of a’s and (3’s

interchange. Speeding up an already fast unit is not generally economical, as

calculations will illustrate.

Scalar Vector Overlapped
Base a a’+p’

(i) Worst a |3+(k-l)|57k a’+P’/k
(ii) Best oc-(k-l)a’ B ka’+P

5

Table IV. Load Redistributions with k~Faster Scalar

(Hi) Sample calculations. Actual figures can sometimes be more revealing than algebraic

expressions. Assume a machine as in Table IV such that

^scalar
= * (abs°lute scalar rate)

^vector
= 10 (absolute vector rate)

Rpeak = 11 = 1 + 10 (absolute peak rate)

a = 0.2, Ca = 0.091 (relative scalar rate)

[3 = 0.6, Cp = 0.909 (relative vector rate)
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a’+ (3’ = 0.018 + 0.182 = 0.2 (overlapped fraction)

C
eff

= 0.327 = (0.2/0.091 + 0.6/0.909 + 0.2/1)"
1

Some revealing numbers emerge from single-component variations. Improving the

scalar unit boosts efficiency relative to both the base machine and an improved vector

variant (vector rate: 20), the latter performing less efficiently than the base machine. For

the given situation, doubling the scalar rate is much more effective. One cannot say

without further information whether costs of this doubling are reasonable. The effect of

load redistribution is insignificant.

Worst Best

C
eff

Mean Tolerance

C rc*R
,eff peak

Mean Absolute

Base Machine * * 0.327 * 3.60

2x Faster, Scalar 0.468 0.492 0.480 2.6% 5.76

2x Faster, Vector 0.192 0.200 0.196 2.0% 4.12

2x Faster, Both * * 0.349 6.7% 7.68

Table V. Overlap: Base and Redistributed Performances

Several observations help explain performance changes that accompany single-

component variations. Doubling the scalar rate (to 2) causes little shift in the pure scalar

fraction for the best case, and none for the worst. On the other hand, shifts in load

between vector and overlapped vector involve only moderate changes of rate (10 versus

12). Consequently, performance changes for either best or worst cases are dominated by
improvement in the bottleneck scalar mode. Improvements to vector capacity (to 20)

hardly affect the pure scalar fraction. Vector and overlapped vector modes undergo large

shifts in workload partition between best and worst redistributions, but vector and
overlapped vector rates are 20 and 21, a difference that barely matters.

The last variation has both scalar and vector components made 2x faster; this is

actually the base machine again, although with a twice higher R
ea^.

Using a linear

model and Table V, an improved scalar component will boost C
e
^- by (0.480-0.327) =

(0.153). The vector change decreases C ^by (0.327-0.196) = (0.131). The net predicted

change in by linear combination, is 0.153-0.131 = 0.022, or 6.7% of 0.327, C ^of
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the base machine. This is prediction error, since making all components uniformly faster

should not change C^; it is C
e
^*Peak that rises. Nonetheless, ±6.7% is a serviceable

accuracy.

2.4 Common Leafy Subtrees

It is not unusual that a CUT has common subtrees. In these cases, parts of the tree

can be shared. Only leafy subtrees, those whose arcs terminate as leaf nodes, are

considered. Other embedded common subtrees can also be merged, but this is

counterproductive; the merged subtree has node fan-outs whose arcs can be totally

unrelated choices. This only detracts from a display of performance factors. The sharing

is depicted in (i) and (ii) of Figure 2.

An independent factor produces duplications in a CUT that arise from a common
immediate ancestor node. Identical subtrees arise because the factor presents choices

that affect overall performance, but the choices do not condition (i.e., change)

contributions from other factors. Such common subtrees will sometimes combine nicely

to yield a graph that is simpler, but is no longer quite a tree. See (iii) and (iv) of Figure 2

for examples.

2.4.1 Composite Frequency. Let the frequency weights on two arcs, a and b, leading to

two identical but distinct leafy subtrees be f and f^. The arcs originate from nodes A
and B, which have node frequency weights of F^ and Fg, respectively. The frequency

weight for the root, R, of a shared subtree T (see Figure 2-ii) is

Fd = F.f +Fn f. .R A a B b

Whenever A and B are the same node (as with an independent factor), F . ==Fg, so

that

Fd = F a (f +f. ),R A v
a b y ’

An interpretation is to imagine a single arc from A to R with a composite frequency
weight of f

a
+ f^ (Figure 2-iii). This view preserves a strict tree representation, although

a colleague has remarked that it sacrifices some presentation clarity; compound weights

on arcs are not obvious.

2.4.2 Composite Capacity. Capacity Cg at the shared root node R is a composite that in

essence preserves all time costs of the separate partitions (original subtrees). Equating
"new times" = "old times".



Solving for C^,

CR
= CACBc

a
c
t/
FAf

a
+ F

B
f
b^CBc

b
FAf

a
+ FB f

b
CAc

a^

Given the case that nodes A and B are identical, F A = F0 , but c * c, ,
since a factorA B a b

is introduced only when it causes some variability. Then

CR
= CA [c

a
c
b
(f
a
+f

b
)/(c

b
f
a
+c

a
f
b
)]

The effective capacity of a single imaginary link from A (=B) to R is the right hand
expression in square brackets.

3. A Final Example

Having examined several CUTs in the exposition, the reader may want to see what a

real one looks like. The sources for this final tree are an ad hoc NIST advisory

committee on benchmarking for export control, and another group of statisticians at

NIST-Boulder. Each has written a report on their work [3, 16]. Their conclusions

reinforce each other from rather different perspectives, the first using typical

benchmarking design, the second applying statistics to observed benchmark results. The
class of machines is vector processors.

Wang, Gary, and Iyer subject data from the 24 Livermore loops, run in 2 modes over

48 systems, to rigorous statistical analyses. A predictive analysis reveals that

performance variances in the data are explained by

• Whether a benchmark runs fast or not.(!) This accounts for 92% of variation.

• Whether a system has vector capability.

• Vector length. These three cover 98% of variation in LFK (Loops) data.

This first set of measurements shows that results on but one dimension, such as

Linpack’s peak vector measurements, cannot alone explain performance variance [16].

However, obvious interpretive deficiencies in the first principal component lead to

another test. A cluster analysis separates the observations into groups distinguished as (i)

scalar, (ii) peak vector, or (iii) moderate vectorizability, in character. Combining
analyses, important aspects are

1. scalar rate

2. peak vector rate

3. rate for intermediate-length vectors

- 14 -



4. compiler vectorization capability

A NIST advisory committee [3] had earlier recommended benchmarks for aspects

1-3 for assessment of exported vector machines. Since point 4, degree-of-vectorization,

is actually determined by program and compiler, the corresponding CUT (Figure 3)

subsumes this aspect in its arc weights. Hence, the two approaches- -architectural and
statistical-- dovetail perfectly. In addition, the treatment of vector lengths is very much
consonant with Hockney and Jesshope [8]—capacities on the vector subtree can be

approximated by their maximum performance, r^, and half-performance length, n,^.

Figure 3A is appropriate if overlapped scalar-vector is possible and important. In either

Figure 3 or 3A, the exact number of arcs for vectors of various lengths is determined by
the required resolution of the model. A very coarse model will have arcs only for (i) near

peak, (ii) a mid-range around ny, and (iii) a slower performance for shorter vectors.

More arcs for finer vector partitioning will improve predictions, but also require more
detail about application workloads.

The committee recommends that no single figure be derived from their benchmarks
(or here, the CUT of Figure 3). In this light, various leaves of the CUT have their own
interpretations. Tailored to special requirements of export control, this view may be

inappropriate for other applications of Figures 3 and 3A. Fortunately the war horse,

Amdahl’s law, will work with the partitioning, so ordinary estimates of average

performance can be made as well.

4c Summary and Conclusion

Coherent performance summaries constitute a major problem for modern-
architecture computers. For example, any average execution speed must be carefully

qualified. Even such coarse performance evaluations must account for dependencies and
variabilities within the architecture.

System components are loaded by demands of an application, or alternately, an

application workload is partitioned by system service. Models based upon this dual

perspective help organize measurements to provide simple performance estimates.

Several examples have shown the strengths of a straightforward and flexible partitioning

scheme based upon tree graphs. Quite explicit, the graphs support multiple

interpretations and promote a more critical role for measurements.

The capacity-and-use tree (CUT) is a natural partition mechanism decorated by
corresponding benchmark results. Its strengths are explicitness and malleability; a CUT
accommodates architecture, implementation and application within a single compact
structure. Parametric variations on the structure yield very compact tableaux that

emphasize equal-gain increments: entry accuracies reflect the best and worst of

workload redistributions. The tableaux resemble those in other engineering practices,

such as charts for estimating coefficients of aerodynamic drag.
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The CUT subsumes other simple flow models. Decorated with measurement results,

it is a mildly formal, compact declaration of perceived influences. The CUT is attractive

as a structure for reporting gross performance characteristics of a machine.

4.0.1 Acknowledgment. Thanks to Robert Carpenter and Carl Smith for questioning

numerous points in earlier versions of the text.
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peak rate (=1)

Notes:

1) format of weights

is: capacity (fraction).

2) capacity is rate scaia vector

C = [ .15/.07 + .1 5/.1 + .35/.3 + .35/1] = 0.194
effic 1 1

Figure 1 . CUT Diagram for

Hypothetical System XXX



A = B

(iii) an independent

factor

(iv) several independent

factors

Figure 2. Common Subtrees



peak rate (=1)

eode
traction
relative
rate

vector

type

scalar vector

shortest

length
1 12

Notes:

1) format of weights

is fraction: capacity.

2) capacities are from

benchmark measurements

3) each application code

has its own signature

of frequencies

4) "Degree of vectorization"

shows in a code’s signature

Figure 3. CUT Diagram for

Typical Vector System

Figure 3A. CUT: Overlapped Scalar-Vector
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